TABLE OF INFORMATION FOR 2002

CONSTANTS AND CONVERSION FACTORS		UNITS		PREFIXES			
1 unified atomic mass unit,	$1 \mathrm{u}=1.66 \times 10^{-27} \mathrm{~kg}$	Name	Symbol	Factor	Prefix	Symbol	
	$=931 \mathrm{MeV} / c^{2}$	meter	m	10^{9}	giga	G	
Proton mass,	$m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$	kilogram	kg	10^{6}	mega	M	
Neutron mass,	$m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$	second	s	10^{3}	kilo	k	
Electron mass,	$m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	ampere	A	10^{-2}	centi	c	
Magnitude of the electron charge, Avogadro's number, Universal gas constant, Boltzmann's constant, Speed of light, Planck's constant,	$e=1.60 \times 10^{-19} \mathrm{C}$	kelvin	K	10^{-3}	milli	m	
	$N_{0}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$			10^{-6}	micro	μ	
	$R=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$	mole	mol				
	$k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	hertz	Hz	10^{-9}	nano	n	
	$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	newton	N	10^{-12}	pico	p	
	$\begin{aligned} h & =6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s} \\ & =4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \end{aligned}$	pascal joule	Pa J	VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES			
	$h c=1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}$	watt	W	θ	$\sin \theta$	$\cos \theta$	$\tan \theta$
	$=1.24 \times 10^{3} \mathrm{eV} \cdot \mathrm{nm}$	coulomb	C	0°	0	1	0
Vacuum permittivity, Coulomb's law constant,	$\begin{aligned} \epsilon_{0} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2} \\ k=1 / 4 \pi \epsilon_{0} & =9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\end{aligned}$	volt ohm	$\begin{aligned} & \mathrm{V} \\ & \Omega \end{aligned}$	30°	1/2	$\sqrt{3} / 2$	$\sqrt{3} / 3$
Vacuum permeability,	$\mu_{0}=4 \pi \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A}$	henry farad	$\begin{gathered} \mathrm{H} \\ \mathrm{~F} \end{gathered}$	37°	$3 / 5$	4/5	3/4
Universal gravitational constant,	$G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$	tesla	T	45°	$\sqrt{2} / 2$	$\sqrt{2} / 2$	1
Acceleration due to gravity at the Earth's surface,	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$	degree Celsiu	${ }^{\circ} \mathrm{C}$	53°	4/5	3/5	4/3
1 atmosphere pressure,	$\begin{aligned} 1 \mathrm{~atm} & =1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} \\ & =1.0 \times 10^{5} \mathrm{~Pa} \end{aligned}$	electronvolt	eV	60°	$\sqrt{3} / 2$	1/2	$\sqrt{3}$
1 electron volt,	$1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$			90°	1	0	∞

The following conventions are used in this examination.
I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
II. The direction of any electric current is the direction of flow of positive charge (conventional current).
III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
*IV. For mechanics and thermodynamics equations, W represents the work done on a system.
*Not on the Table of Information for Physics C, since Thermodynamics is not a Physics C topic.

ADVANCED PLACEMENT PHYSICS B EQUATIONS FOR 2002

FLUID MECHANICS AND THERMAL PHYSICS

$p=p_{0}+\rho g h$	$A=$ area
$F_{\text {buoy }}=\rho V g$	$c=$ specific heat or molar
$A_{1} v_{1}=A_{2} v_{2}$	specific heat $e=$ efficiency
$p+\rho g y+\frac{1}{2} \rho v^{2}=$ const.	$F=$ force
$\cdots+\rho g y+\frac{1}{2} \rho v^{2}=$ const.	$h=$ depth
$\Delta \ell=\alpha \ell_{0} \Delta T$	$K_{\text {avg }}=$ average molecular
$Q=m L$	kinetic energy
	$L=$ heat of transformation
$Q=m c \Delta T$	$\ell=$ length
	$M=$ molecular mass
$p=\frac{F}{A}$	$m=$ mass of sample
	$n=$ number of moles
$p V=n R T$	$p=$ pressure
	$Q=$ heat transferred to a system
$K_{\text {avg }}=\frac{3}{2} k_{B} T$	$T=$ temperature
	$U=$ internal energy
$\sqrt{3 R T} \sqrt{3 k_{B} T}$	$V=$ volume
$v_{r m s}=\sqrt{\frac{3 R}{M}}=\sqrt{\frac{\mu}{\mu}}$	$v=$ velocity or speed
$W=-p \Delta V$	$\begin{gathered} v_{r m s}=\begin{array}{c} \text { root-mean-square } \\ \text { velocity } \end{array} \end{gathered}$
$Q=n c \Delta T$	$W=$ work done on a system
	$y=$ height
$\Delta U=Q+W$	$\alpha=$ coefficient of linear
$\Delta U=n c_{V} \Delta T$	expansion $\mu=$ mass of molecule
$=\left\|\frac{W}{Q_{H}}\right\|$	$\rho=$ density
$e_{c}=\frac{T_{H}-T_{C}}{T_{H}}$	

ATOMIC AND NUCLEAR PHYSICS

$$
\begin{array}{ll}
E=h f=p c & E=\text { energy } \\
K_{\max }=h f-\phi & f=\text { frequency } \\
& K=\text { kinetic energy } \\
\lambda=\frac{h}{p} & m=\text { mass } \\
& p=\text { momentum } \\
\lambda=\text { wavelength } \\
& \phi=\text { work function }
\end{array}
$$

WAVES AND OPTICS

$$
\begin{aligned}
& v=f \lambda \quad d=\text { separation } \\
& n=\frac{c}{v} \quad f=\text { frequency or focal } \\
& \text { length } \\
& n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \\
& h=\text { height } \\
& L=\text { distance } \\
& \sin \theta_{c}=\frac{n_{2}}{n_{1}} \\
& \frac{1}{s_{i}}+\frac{1}{s_{0}}=\frac{1}{f} \\
& M=\frac{h_{i}}{h_{0}}=-\frac{s_{i}}{s_{0}} \\
& f=\frac{R}{2}
\end{aligned}
$$

$d \sin \theta=m \lambda$
$x_{m} \approx \frac{m \lambda L}{d}$

GEOMETRY AND TRIGONOMETRY

Rectangle

$$
A=b h
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle

$$
\begin{aligned}
& A=\pi r^{2} \\
& C=2 \pi r
\end{aligned}
$$

Parallelepiped

$$
V=\ell w h
$$

Cylinder

$$
\begin{aligned}
& V=\pi r^{2} \ell \\
& S=2 \pi r \ell+2 \pi r^{2}
\end{aligned}
$$

Sphere

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \\
& S=4 \pi r^{2}
\end{aligned}
$$

Right Triangle

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \sin \theta=\frac{a}{c} \\
& \cos \theta=\frac{b}{c} \\
& \tan \theta=\frac{a}{b}
\end{aligned}
$$

$A=$ area
$C=$ circumference
$V=$ volume
$S=$ surface area
$b=$ base
$h=$ height
$\ell=$ length
$w=$ width
$r=$ radius

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2002

MECHANICS

$v=v_{0}+a t$
$x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \quad \begin{array}{ll}F & =\text { force } \\ f & =\text { frequency }\end{array}$
$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
$\sum \mathbf{F}=\mathbf{F}_{\text {net }}=m \mathbf{a}$
$\mathbf{F}=\frac{d \mathbf{p}}{d t}$
$\mathbf{J}=\int \mathbf{F} d t=\Delta \mathbf{p}$
$\mathbf{p}=m \mathbf{v}$
$F_{\text {fric }} \leq \mu N$
$W=\int \mathbf{F} \cdot d \mathbf{r}$
$K=\frac{1}{2} m v^{2}$
$P=\frac{d W}{d t}$
$P=\mathbf{F} \cdot \mathbf{v}$
$\Delta U_{g}=m g h$
$a_{c}=\frac{v^{2}}{r}=\omega^{2} r$
$\tau=\mathbf{r} \times \mathbf{F}$
$\sum \tau=\tau_{n e t}=I \boldsymbol{\alpha}$
$I=\int r^{2} d m=\sum m r^{2}$
$\mathbf{r}_{c m}=\sum m \mathbf{r} / \sum m$
$v=r \omega$
$\mathbf{L}=\mathbf{r} \times \mathbf{p}=I \boldsymbol{\omega}$
$K=\frac{1}{2} I \omega^{2}$
$\omega=\omega_{0}+\alpha t$
$\theta=\theta_{0}+\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$\mathbf{F}_{s}=-k \mathbf{x}$
$U_{S}=\frac{1}{2} k x^{2}$
$T=\frac{2 \pi}{\omega}=\frac{1}{f}$
$T_{S}=2 \pi \sqrt{\frac{m}{k}}$
$T_{p}=2 \pi \sqrt{\frac{\ell}{g}}$
$\mathbf{F}_{G}=-\frac{G m_{1} m_{2}}{r^{2}} \hat{\mathbf{r}}$
$U_{G}=-\frac{G m_{1} m_{2}}{r}$

ELECTRICITY AND MAGNETISM

$F=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r^{2}}$
$\mathbf{E}=\frac{\mathbf{F}}{q}$
$\oint \mathbf{E} \cdot d \mathbf{A}=\frac{Q}{\epsilon_{0}}$
$E=-\frac{d V}{d r}$
$V=\frac{1}{4 \pi \epsilon_{0}} \sum_{i} \frac{q_{i}}{r_{i}}$
$U_{E}=q V=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1} q_{2}}{r}$
$C=\frac{Q}{V}$
$C=\frac{\kappa \epsilon_{0} A}{d}$
$C_{p}=\sum_{i} C_{i}$
$\frac{1}{C_{s}}=\sum_{i} \frac{1}{C_{i}}$
$I=\frac{d Q}{d t}$
$U_{c}=\frac{1}{2} Q V=\frac{1}{2} C V^{2}$
$R=\frac{\rho \ell}{A}$
$V=I R$
$R_{s}=\sum_{i} R_{i}$
$\frac{1}{R_{p}}=\sum_{i} \frac{1}{R_{i}}$
$P=I V$
$\mathbf{F}_{M}=q \mathbf{v} \times \mathbf{B}$
$\oint \mathbf{B} \cdot d \boldsymbol{\ell}=\mu_{0} I$
$\mathbf{F}=\int I d \boldsymbol{\ell} \times \mathbf{B}$
$B_{s}=\mu_{0} n I$
$\phi_{m}=\int \mathbf{B} \cdot d \mathbf{A}$
$\varepsilon=-\frac{d \phi_{m}}{d t}$
$\varepsilon=-L \frac{d I}{d t}$
$U_{L}=\frac{1}{2} L I^{2}$
$A=$ area
$B=$ magnetic field
$C=$ capacitance
$d=$ distance
$E=$ electric field
$\boldsymbol{\varepsilon}=\mathrm{emf}$
$F=$ force
$I=$ current
$L=$ inductance
$\ell=$ length
$n=$ number of loops of wire per unit length
$P=$ power
$Q=$ charge
$q=$ point charge
$R=$ resistance
$r=$ distance
$t=$ time
$U=$ potential or stored energy
$V=$ electric potential
$v=$ velocity or speed
$\rho=$ resistivity
$\phi_{m}=$ magnetic flux
$\kappa=$ dielectric constant

GEOMETRY AND TRIGONOMETRY

Rectangle

$$
A=b h
$$

Triangle

$$
A=\frac{1}{2} b h
$$

Circle
$A=\pi r^{2}$
$C=2 \pi r$
Parallelepiped $V=\ell w h$
Cylinder

$$
\begin{aligned}
& V=\pi r^{2} \ell \\
& S=2 \pi r \ell+2 \pi r^{2}
\end{aligned}
$$

Sphere

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
S & =4 \pi r^{2}
\end{aligned}
$$

Right Triangle

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \\
& \sin \theta=\frac{a}{c} \\
& \cos \theta=\frac{b}{c} \\
& \tan \theta=\frac{a}{b}
\end{aligned}
$$

CALCULUS

$$
\begin{aligned}
& \frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d x} \\
& \frac{d}{d x}\left(x^{n}\right)=n x^{n-1} \\
& \frac{d}{d x}\left(e^{x}\right)=e^{x} \\
& \frac{d}{d x}(\ln x)=\frac{1}{x} \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}, n \neq-1 \\
& \int e^{x} d x=e^{x} \\
& \int \frac{d x}{x}=\ln |x| \\
& \int \cos x d x=\sin x \\
& \int \sin x d x=-\cos x
\end{aligned}
$$

